
LA IMPORTANCIA DEL CONTROL ANALÍTICO EN CERVECERÍA

En cervecería, como en cualquier otra industria, conocer tu producto solo te puede traer ventajas. Para ello son necesarios tanto **controles** como el **registro** de los mismos. Con "control" se abarca desde algo tan básico como es pesar, hasta complejos análisis de laboratorio y, cómo no, degustar. Y en cuanto a "registro", nos referimos a algo tan sencillo (e importante) como apuntar de forma ordenada todo lo relativo a los controles efectuados.

Todos queremos volver a tomar la misma cerveza, esa que nos ha gustado tanto, y que esta sea la misma que recordábamos en sabor, olor, color, sensación en boca y amargor. Para ello es imprescindible el control del proceso y, si queremos sacar el mayor partido de este trabajo, un buen registro es la clave. A continuación proponemos algunos modelos de registro que creemos pueden ayudarte.

Pongamos un ejemplo de gráfica que nos ayudará a un análisis de comportamiento de un producto y a definir si el cliente volverá a tomar esa cerveza que tanto le gustó y está deseando volver a beber:

En esta gráfica con registro de cada lote y línea de máximos y mínimos permitidos según nuestro estilo de cerveza, se puede observar que a partir del L010 los amargos se nos están subiendo hasta casi llegar a salirse del límite que le hemos marcado como permitido. Lo cual se puede deber a diferentes causas, por ejemplo:

- Cambio de concentración de alfa ácidos en el lote de lúpulo.
- Cambio en las condiciones de fabricación durante la ebullición.
- Adición de antiespumantes.
- Pérdidas de espuma en diferentes puntos del proceso.
- Balanza descalibrada.

Por tanto, gracias al registro y control analítico, detectando a tiempo la desviación, hemos conseguido disminuir el uso de lúpulo y así **abaratar costes**.

Durante el <u>proceso de fabricación</u> hay que pesar las materias primas según nuestros cálculos y lo que queremos conseguir, para seguir principalmente controlando tiempos, temperaturas y pH que seguramente en algún momento deberemos corregir. Al hacer un registro, nos obligamos a fijarnos en todos y cada uno de los puntos del proceso. Esto hará que no demos nada por hecho y nos facilitará recalcular la adición de diferentes parámetros, permitiendo de este modo poder corregir cualquier contratiempo lo más rápido posible.

EJEMPLO DE REGISTRO DE FABRICACIÓN

Nombre (de cerveza	:		Ope	rario	Ho	ra de inicio	_י :h	
Fecha:	//		Lote:			Hor	a fin:	h	
	MATE	RIAS F	PRIMAS		EBULLICIÓN				
D-1'-					Hora inico				
Ratio	de agua:				Densidad				
TIPO	LOTE	KG	EXTRACTO	COLOR	рН				
					Volumen				
					Sales				
					Hora fin				
					Densidad				
MOLIENDA					рН				
	Hora inic	rio:			Volumen				
	Hora					LÚPI	II O		
	11014				TIPO	α-ácidos	g g	min	
	MAG	CERAC	CIÓN						
Тª	TIEMP	0	рН	SALES					
					WHIRPOOL				
					Temperatura	a			
FILTRACIÓN					Tiempo				
Hora inico	1				Sales				
	Prir	mer M	osto			,			
Volumen						ENFRIA	MIENTO		
Densidad					Hora inico				
Aguas de lavado					Aireación				
Temperatura					Temperatura				
рН					Hora Fin				
Volumen									
	Mo	osto F	inal			SIFICACIÓN	DE LEVAI	DURA	
Volumen					Cepa .				
Densidad			Estado						
Últimas aguas					Dosificación				
Densidad					Temperatura	a			
рН									

Hora Fin

En la <u>fermentación</u>, la densidad, la temperatura y los recuentos de levadura nos darán la gráfica de fermentación típica de nuestro estilo de cerveza. Además, el análisis sensorial o catado, nos ayudará a detectar lo bien que va la fermentación o algún *off-flavor* que deberemos evitar, como puede ser el diacetilo (según el estilo) o los aromas sulfurosos. Problemas que fácilmente se solucionan si son detectados a tiempo. De la mano de la densidad se encuentra el concepto de atenuación, dato que nos ayudará a saber si la fermentación ha terminado o si hemos macerado correctamente

EJEMPLO DE REGISTRO DE FERMENTACIÓN

	FERMENTACIÓN											
DÍA	HORA	Tª	DENSIDAD/ ATENUACIÓN	RECUENTO	VIABILIDAD	PRESIÓN	OTROS					

En <u>guarda</u>, bajaremos la temperatura del tanque, dejaremos la cerveza reposar y tomar forma. Aquí volvemos a la importancia del catado, los off-favors y la vigilancia de la temperatura del tanque, porque todos sabemos que a veces pueden fallar los equipos de frío o en verano ir muy justos por la temperatura ambiental.

Si hablamos de <u>producto final</u>, nuestra cerveza debería tener unas especificaciones y unas deviaciones permitidas para que el cliente siempre tome lo mismo y no tenga sorpresas.

Pongamos un ejemplo de analíticas básicas y la información a la que van ligadas como cervecero y consumidor, de aquí su importancia:

- Alcohol: por ley, es obligatorio ponerlo en la etiqueta. Si nos pasamos, estamos fuera del rango permitido y si nos quedamos cortos, pagamos impuestos de más.
- Extracto seco primitivo y extracto aparente: ligados al cuerpo de la cerveza.
- pH: pista de posible contaminación microbiana.
- Color: lo primero que vemos al servir una cerveza, importantísimo para la sugestión del cliente.
- Amargo: lo paladeamos, da astringencia, está ligado al sabor, ha de ser equilibrado.
- Espuma/CO₂: sensación en boca y muy importante visualmente. Puede variar por muchos factores.
- Oxígeno: provoca oxidación de la cerveza y off-flavors de papel, cartón o metal.
- SO₂: Es un alérgeno que por ley se debe etiquetar si es mayor de 10ppm.
- Analítica microbiana de levaduras salvajes y bacterias: evitarán sorpresas en la estabilidad del producto a lo largo del tiempo.

Con todo esto, no debemos olvidar que después de todo el trabajo y esfuerzo que supone fabricar tu cerveza, los análisis deberían estar incluidos en nuestro proceso productivo y no suponer un extra, como muchas veces pasa.

Desde el AETCM-LAB, laboratorio especializado en cerveza, con personal altamente cualificado en este campo y bajo analíticas oficiales, te podemos ayudar durante todo el proceso cervecero.

En próximos documentos hablaremos más técnicamente sobre situaciones típicas que os encontráis los cerveceros y cerveceras, así como de sus posibles causas, cómo detectarlas y solventarlas.

